Use of Padé Approximants to Estimate the Rayleigh Wave Speed

نویسنده

  • A. T. Spathis
چکیده

There exists a range of explicit and approximate solutions to the cubic polynomial Rayleigh equation for the speed of surface waves across an elastic half-space. This article presents an alternative approach that uses Padé approximants to estimate the Rayleigh wave speed with five different approximations derived for two expansions about different points. Maximum relative absolute errors of between 0.34% and 0.00011% occur for the full range of the Poisson ratio from -1 to 0.5. Even smaller errors occur when the Poisson ratio is restricted within a range of 0 to 0.5. For higher-order approximants, the derived expressions for the Rayleigh wave speed are more accurate than previously published solutions, but incur a slight cost in extra arithmetic operations, depending on the desired accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rayleigh Wave in an Incompressible Fibre-Reinforced Elastic Solid Half-Space

In this paper, the equation of motion for an incompressible transversely isotropic fibre-reinforced elastic solid is derived in terms of a scalar function.   The general solution of the equation of motion is obtained, which satisfies the required radiation condition.  The appropriate traction free boundary conditions are also satisfied by the solution to obtain the required secular equation for...

متن کامل

Rayleigh Wave in an Initially Stressed Transversely Isotropic Dissipative Half-Space

The governing equations of a transversely isotropic dissipative medium are solved analytically to obtain the surface wave solutions. The appropriate solutions satisfy the required boundary conditions at the stress-free surface to obtain the frequency equation of Rayleigh wave. The numerical values of the non-dimensional speed of Rayleigh wave speed are computed for different values of frequency...

متن کامل

Research Article Love and Rayleigh Correction Terms and Padé Approximants

Simplified theories governing behavior of beams and plates keeping the fundamental characteristics of the being modeled objects are proposed and discussed. By simplification, we mean decrease of order of partial differential equations (PDEs) with respect to spatial coordinates. Our approach is used for both discrete and continuous models. An advantage of Padé approximation is addressed. First p...

متن کامل

An Application of Padé Approximants to Elastic Wave Scattering

Several Padé methods were used to try to accelerate the convergence of partial wave sums for scattering amplitudes. A specific test problem of longitudinal-to-longitudinal scattering from a spherical void was studied in detail. Results for this test case and the behavior of partial wave amplitudes for general cases are presented and discussed.

متن کامل

A Fast Frequency Sweep Approach with a Priori Choice of Padé Approximants and Control of Their Interval of Convergence

In this work, a solution strategy based on the use of Padé approximants is investigated for efficient solution of parametric finite element problems such as, for example, frequency sweep analyses. An improvement to the Padé-based expansion of the solution vector components is proposed, suggesting the advantageous a priori estimate of the poles of the solution. This allows for the intervals of a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015